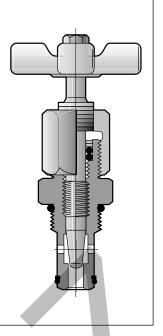
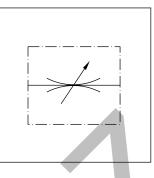
Cnap	ter 5:	
Flow	Valves	

Series	Description				Si	ze		Moui	Page			
	Parker Standard DIN / ISO	1/4	3/8	1/2	3/4	1	06	10	16	Subplate	Screw-in	
	Throttle valves, manual adjustment											
MVI		•	•	•	•						•	5-2
NS		•	•	•	•	•				•		5-4
FS	With free return flow	•	•	•	•	•				•		5-6
	Flow control valves, manual adjustment											
PCMS		•	•	•	•	•				•		5-8
GFG2							•			• ,		5-10
2F1C								•	•	•		5-14

More flow valves are presented in the following chapters: Chapter 7: Sandwich Valves

Chapter 8: Chapter 9: Slip-In Cartridge Valves SAE Flange Valves


Chapter 10: Valves for Pipe Mounting

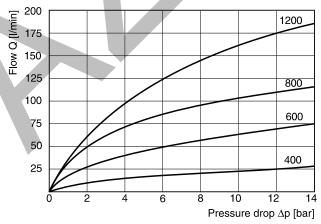


Manatrol needle valve with steel body as screw-in valve for block insertion, optionally with a 30° taper fine V-notch or micro-fine rectangular slot. The form of the metering opening influences the accuracy of the flow adjustment, which is pressure and viscosity dependent. The needle is made of stainless steel and fits into a ring gap in the valve cartridge. For details of cutting tools for reaming the block bore, see 'Accessories' at the end of this chapter.

Characteristic values

Size	Operating press. [bar]	Flow [l/min] ∆p 10 bar	Max. orifice area [cm²]	Kv factor valve	Weight [kg]
400	350	25	0.14	6.3	0.18
600	350	65	0.37	18.5	0.32
800	350	105	0.55	27.5	0.59
1200	350	160	0.90	45.7	0.95
Needle	size				
400-2		11	0.52		
400-3		2	0.012		

Flow rate Q [I/min] = Kv · Δp


Kv see table

∆p [bar]

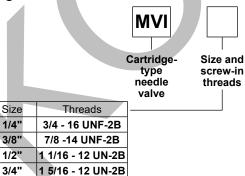
 γ [kg/dm³] = specific gravity of fluid

(γ for mineral oil = 0.85 – 0.9)

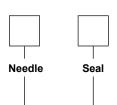
∆p/Q curves

All characteristic curves measured with HLP46 at 50 °C.

Ordering code


Code

400


600

800

1200

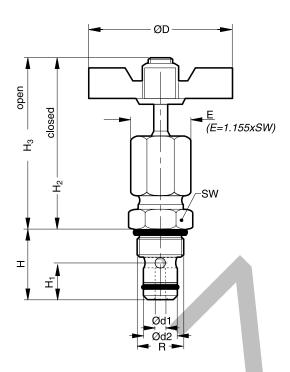
_	Code	Seal
	omit	NBR
	١.,	FPM

Code Needle

omit Standard 30°
taper

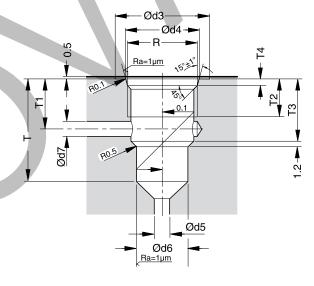
2 ¹) Fine V-notch

Micro-fine
slotted


Bold letters = Short-term availability

1) Only for size 400.

MVI UK.indd 28.07.22

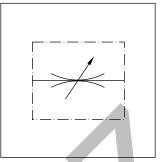


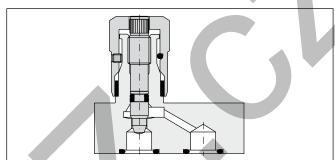
Threaded cartridge valve

Size	Н	Н3	H2	H1	Ød1	Ød2	R (Threads)	ØD	sw
MVI 400	25.4	65	60	10.9	4.6	14.22	3/4 - 16 UNF-2	51	22.1
MVI 600	30	81	73	13.5	7.9	15.8	7/8 - 14 UNF-2	64	25.4
MVI 800	39.6	91	79	15.2	9.4	20.55	1 1/16 - 12 UN-2	83	31.8
MVI 1200	43.4	102	88	19.1	11.7	26.92	1 5/16 - 12 UN-2	98	38.1

Mounting cavity

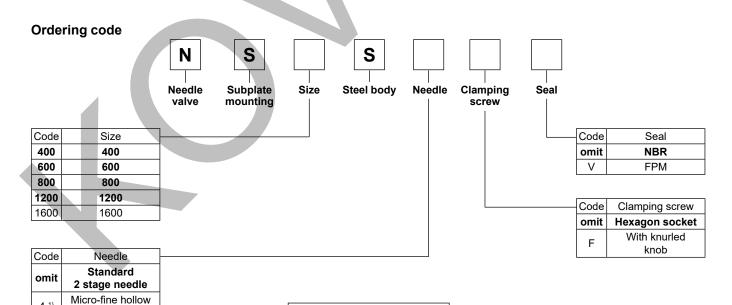
Size	Ød3	Ød4 ^{+ 0.12}	Ød5 (min)	Ød6 ^{+ 0.05}	Ød7	T4 ^{+ 0.38}	T2	Т3	Т	T1
MVI 400	26	20.6	5.3	14.275	5.3	2.54	15	17.8	27	14.2
MVI 600	30	23.93	8.1	15.85	8.1	2.54	17	21.6	32	16.5
MVI 800	37	29.16	10.2	20.6	10.2	3.3	19	30	42	24.1
MVI 1200	44	35.54	12.7	26.975	12.7	3.3	19	31.8	46	24.6


MVI UK.indd 28.07.22



Manatrol shut-off and metering valves with 2 stage needle cone. Fine adjustment for the first stage can be achieved with 3 rotations of the adjustment knob. The second stage with normal throttle characteristics is achieved with 3 further rotations.

A cylindrical needle with a rectangular slot is provided to reduce the viscosity effect for sizes 400 and 600. The flow is dependent on pressure and viscosity.



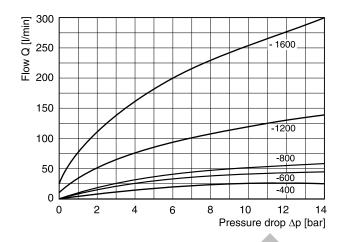
Characteristic values

(only for standard 2 stage needle)

	Press	. [bar]	Flow	Max. cross-		Weight
Size	steel	brass	[l/min] ∆p 10 bar	section [cm²]	valve open	[kg]
400	210	140	25	0.13	6.3	0.4
600	210	140	40	0.22	11.2	0.6
800	210	140	50	0.28	13.9	1.0
1200	210	140	120	0.70	35.4	2.0
1600	210	35	250	1.48	75	4.0

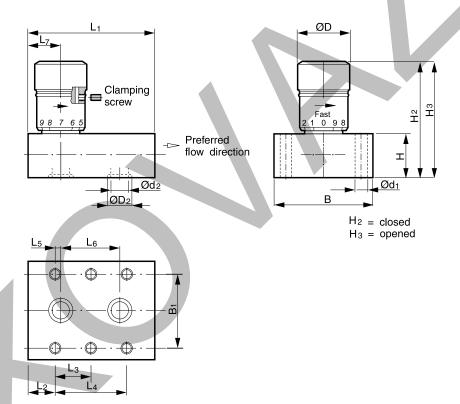
Flow rate Q [l/min] = Kv · $\frac{\Delta p}{\gamma}$ Kv from the table $\frac{\Delta p}{p \text{ [bar]}}$ $\frac{\Delta p}{p \text{ [kg/dm}^3]}$ = specific weight of the medium ($\frac{\Delta p}{p \text{ (prime)}}$) = 0.85 – 0.9)

1) Only for sizes 400 to 600.


needle with slot

Bold letters =Short-term availability

NS UK.indd 28.07.22



Δ p/Q curves

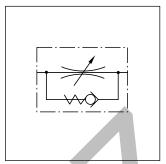
All characteristic curves measured with HLP46 at 50 °C.

Dimensions

Hexagon adjusting knob, standard for size 1600

Size	L1	L2	L3	L4	L5	L6	L7	В	B1	Н	H2	Н3	Ød1	Ød2	ØD2	ØD	SW
NS400	47.8	6.4	_	34.7	4.8	25.4	11.2	44.5	33.3	22.4	49.5	54.6	6.8	7.1	13.3	20.6	_
NS600	50.8	8.6	_	33.6	4.1	25.4	12.7	50.8	38.1	25.4	61.0	67.3	7.0	8.6	16.0	25.4	-
NS800	75.4	18.5	_	38.1	4.1	30.2	22.6	57.2	44.4	25.4	70.0	77.2	7.0	11.9	19.1	30.0	_
NS1200	93.7	8.6	38.1	76.2	11.2	54.4	19.8	69.9	54.1	28.4	79.3	94.5	9.5	16.8	24	34.8	_
NS1600	111.3	7.9	47.8	95.3	19.0	57.2	26.9	76.2	60.4	44.5	123.2	140.0	9.5	22.4	32	-	47.5

NS UK.indd 28.07.22



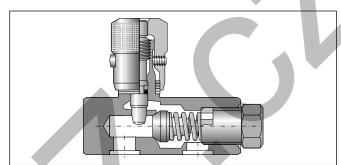
Characteristics / Ordering Code

Manatrol throttle check valves series FS allow the adjustment of the flow for a defined direction.

A 2 stage needle allows for very exact setting of smaller flow rates with the first 3 rotations of the adjustment knob. After 3 more rotations, the valve is completely open. The valve setting can be locked by a locking screw.

Flow rate Q [l/min] = Kv · $\sqrt{\frac{\Delta p}{\gamma}}$

Kv

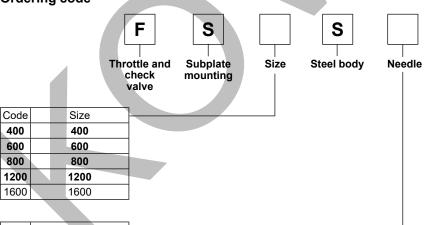

∆p [bar]

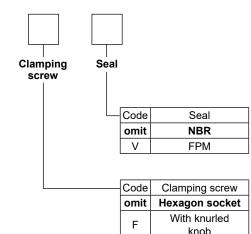
 γ [kg/dm³]

] = specific gravity of fluid

from the table

(γ for mineral oil = 0.85 – 0.9)




Characteristic values

		Δ					
400 1)	210	25	0.37	18.6	0.13	6.3	0.23
600 ¹⁾	210	40	0.62	30.4	0.22	11.2	0.31
800 1)	210	50	0.86	43.4	0.28	14	0.67
1200 ¹)	210	120	1.18	60	0.70	35.4	1.17
1600 ¹)	210	250	2.23	111	1.48	75	2.31

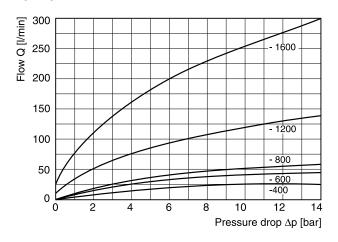
¹⁾ MTTF_D value 150 years

 Code
 Needle

 omit
 Standard

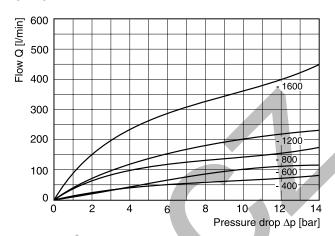
 2 stage needle

 4 1)
 Micro-fine hollow needle with slot

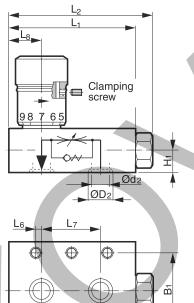

1) Only for sizes 400 to 600.

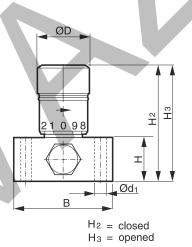
Bold letters =Short-term availability

FS UK.indd 28.07.22



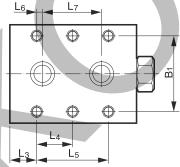
∆p/Q performance curves


Performance Curves / Dimensions

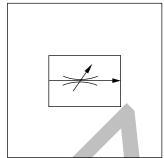

∆p/Q performance curves free flow



All characteristic curves measured with HLP46 at 50 °C.

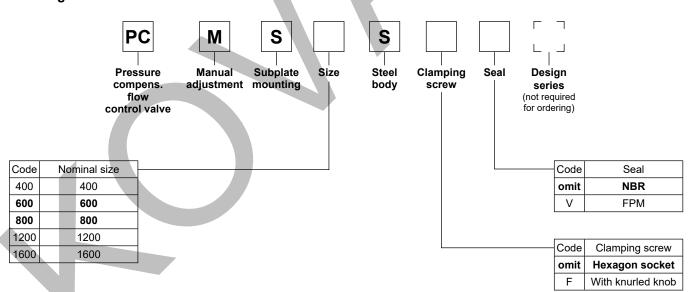

Dimensions

Hex head adjusting knob Standard for Size 1600


Size	L1	L2	L3	L4	L5	L6	L7	L8	В	B1	Н	H1	H2	Н3	Ød1	Ød2	ØD2	ØD	SW
FS400	63.5	71.4	14.2	_	35.1	4.9	25.4	21.3	44.5	33.3	22.1	10.9	51.1	56.1	6.8	7.1	13.3	20.6	_
FS600	69.9	78.0	18.3	_	33.3	4.1	25.4	25.4	50.8	38.1	25.4	12.7	61.0	67.3	7.0	10.4	16	25.4	_
FS800	81.0	89.2	21.3	_	38.1	4.1	30.2	30.7	57.2	44.5	31.8	15.7	76.2	83.6	7.0	11.9	19.1	30.0	_
FS1200	103.9	114.6	14.0	38.1	76.2	11.2	54.1	38.6	69.9	54.1	44.5	22.1	95.5	110.5	9.0	16.8	24	34.8	_
FS1600	127.0	137.7	15.7	47.8	95.5	19.3	56.9	45.2	76.2	60.5	50.8	25.4	129.5	146.3	9.0	22.4	32	_	47.5

FS UK.indd 28.07.22

Manatrol 2-way flow control valves for pressure compensated regulation of the flow. As a consequence of pressure changes, the set value can vary by \pm 5 % within the tolerance range. Changes in viscosity and in temperature have the same effect and are to be observed.

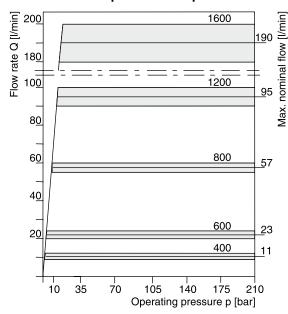


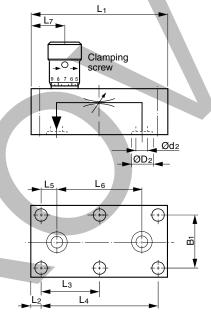
Characteristic values

	Max.	Flow	ontrol	Wajasht
Size	press. [bar]	Q¹) [l/min]	∆p [bar]	Weight [kg]
400	210	1 - 10	7	0.77
600	210	2 - 25	7	1.23
800	210	6 - 60	11	2.50
1200	210	10 - 100	11	3.18
1600	210	19 - 190	11	7.41

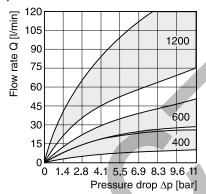
Ordering code

Bold letters =Short-term availability

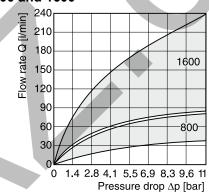

¹⁾ Min. and max. flow rate.

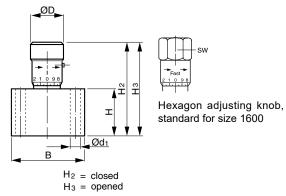

Controlled flow vs. pressure drop

Characteristcs Curves / Dimensions


All characteristic curves measured with HLP46 at 50 °C.

Dimensions




Reverse flow vs. pressure drop at minimum and maximum settings

Sizes 400, 600 and 1200

Sizes 800 and 1600

Size	L1	L2	L3	L4	L5	L6	L7	В	B1	Н	H2	Н3	Ød1	Ød2	ØD2	ØD	sw
400	85.9	6.4	_	72.8	9.3	54.2	21.3	44.5	33.3	28.4	57.7	62.7	6.8	7.1	13.3	20.6	_
600	101.6	6.4	_	88.9	10.4	68.0	25.4	50.8	38.1	31.8	67.8	73.4	7.0	8.6	16.0	25.4	_
800	117.3	6.4	_	104.9	12.7	79.5	44.5	57.2	44.4	44.5	95.0	102.6	7.0	11.9	19.1	30.0	_
1200	142.7	9.7	61.7	123.7	15.7	91.9	40.4	69.9	54.1	57.2	115.8	128.5	9.5	16.8	24.0	34.8	_
1600	171.5	12.7	73.2	146.1	19.1	107.9	49.3	76.2	60.4	69.9	158.2	175.3	9.5	22.4	32.0	_	47.5

PCMS UK.indd 28.07.22

2-way flow control valves series GFG2 are used to provide pressure compensated flow. The valve design compensates temperature variations to a certain extent.

The GFG is optionally equipped with a built-in check valve for the return flow.

Design

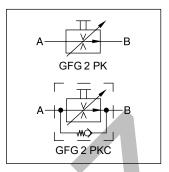
The 2-way flow control valves are used with a triangular flow restrictor and a subsequent pressure compensator. The setting of the flow rate can be locked by a cylinder lock in the adjusting knob against unauthorized adjustment (option S).

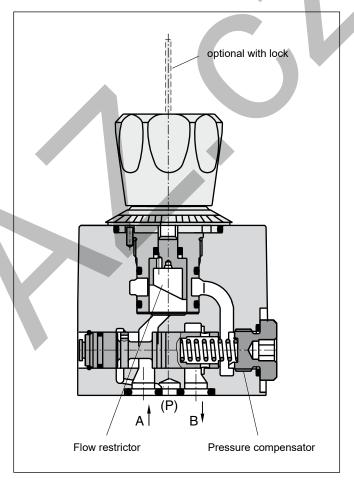
Function

The fluid enters through port A through the flow restrictor. Downstream of the flow restrictor the pressure compensator is located. The control edges are provided by four radial bores in the poppet, which are fully open to port B in the neutral position.

Optionally the flow from A to B can be blocked by external pilot pressure applied to port P (option X). This can be used to avoid unintended initial movements of actuators.

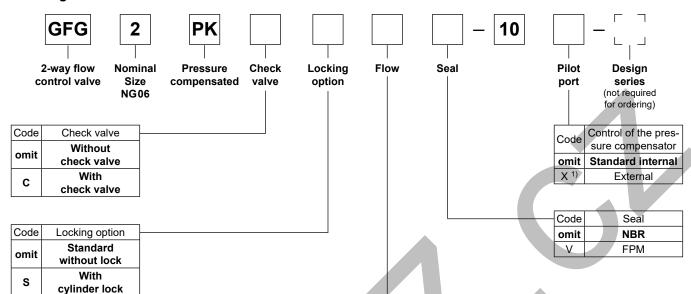
The flow adjustment is done via the hand knob with an adjusting angle knob of 270°.


Features


- · Flow rate independent of pressure and temperature
- Available for 7 different flow rates
- Good fine adjustment
- · External port (P) to block flow from A to B
- · Optional reverse flow check valve
- Turn knob with cylinder lock (option S)

Note

Rectifier plate and subplates see 'Accessories' at the end of this chapter.



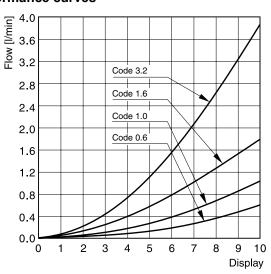
Ordering Code / Technical Data

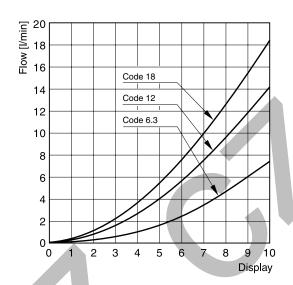
Ordering code

Code	Flow [l/min]
0.6	0.015 to 0.6
1.0	0.015 to 1.0
1.6	0.015 to 1.6
3.2	0.025 to 3.2
6.3	0.025 to 6.3
12	0.080 to 12.0
18	0.080 to 18.0

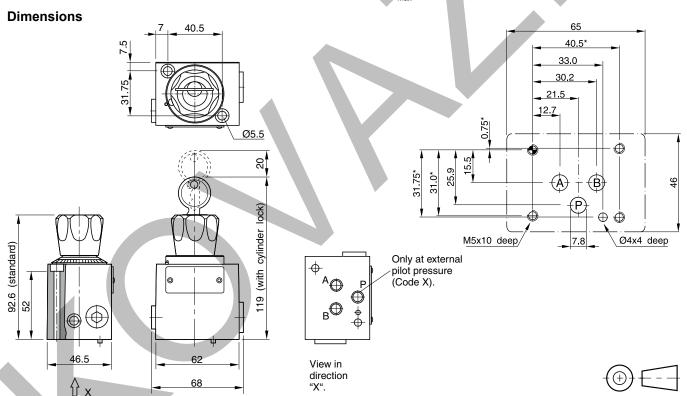
1) Only in combination with integrated check valve.

Bold letters = Short-term availability


Technical data


Design Actuator Mounting type Mounting position MTTF _D value Weight Ambient temperature Fluid Fluid temperature [°C] Viscosity, permitted Orifice, infinitely variable, pressure-compensated Manual flow rate adjustment ISO 6263 code: ISO 6263-AB-03-4-B unrestricted 150 [years] 150 1.1 (without subplate) -20+60 Hydraulic oil according to DIN 51524 Fluid temperature [°C] Viscosity, permitted [cSt] / [mm²/s] 20 400
Mounting type ISO 6263 code: ISO 6263-AB-03-4-B Mounting position MTTF _D value [years] Weight [kg] Ambient temperature [°C] Fluid Fluid temperature [°C] ISO 6263 code: ISO 6263-AB-03-4-B unrestricted 150 (years) 150 1.1 (without subplate) -20+60 Hydraulic oil according to DIN 51524 Fluid temperature [°C] -20+70 (NBR: -25+70)
Mounting position unrestricted MTTF _D value [years] Weight [kg] Ambient temperature [°C] Fluid Hydraulic oil according to DIN 51524 Fluid temperature [°C]
Mounting position MTTF _D value [years] 150 Weight [kg] 1.1 (without subplate) Ambient temperature [°C] -20+60 Hydraulic oil according to DIN 51524 Fluid temperature [°C] -20+70 (NBR: -25+70)
MTTF _D value [years] 150 Weight [kg] 1.1 (without subplate) Ambient temperature [°C] -20+60 Fluid Hydraulic oil according to DIN 51524 Fluid temperature [°C] -20+70 (NBR: -25+70)
Weight[kg]1.1 (without subplate)Ambient temperature[°C]-20+60FluidHydraulic oil according to DIN 51524Fluid temperature[°C]-20+70 (NBR: -25+70)
Ambient temperature [°C] -20+60 Fluid Hydraulic oil according to DIN 51524 Fluid temperature [°C] -20+70 (NBR: -25+70)
Fluid Hydraulic oil according to DIN 51524 Fluid temperature [°C] -20+70 (NBR: -25+70)
Fluid temperature [°C] -20+70 (NBR: -25+70)
Viscosity permitted [cSt] / [mm²/s] 20 400
Viscosity, permitted [cotj / [min /3] 20 400
recommended [cSt] / [mm²/s] 30 80
Filtering ISO 4406 (1999); 18/16/13
Min. pressure difference [bar] 5 (GFG*1.6/3.2), 8.5 (GFG*6.3/12/18)
Operating pressure [bar] A; B = 315, P = 5 (GFG*, GFG*C), A, B, P = 160 (GFG*X)
Effect of pressure on Q_{max} at p = 160 bar [%] ± 2 (GFG*1.6/3.2/6.3/12), ± 2.5 (GFG*18)
Flow direction
$A \rightarrow B$ Flow control function
$B \rightarrow A$ Throttle function or free flow through check valve

GFG UK.indd 28.07.22


Performance curves

All characteristic curves measured with HLP46 at 50 °C.

Changes in pressure cause a change of pre-set flow rate. Flow rate deviations at Q_{max} : $\pm~2~\%$

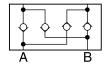
Bolt kits (Cylinder head ISO 4762-12.9 not included)

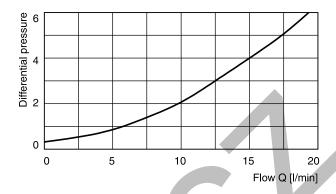
Nominal size	Valve model	Quantity	Tightening	Valve without	rectifier plate	Valve with rectifier plate		
Valve	valve illouel	Quantity	torque [Nm]	Dimensions	Order No.	Dimensions	Order No.	
NG06	GFG2	2	7.6 Nm	2x M5x60	BK380	2x M5x100	BK466	

O-rings for sealing the connecting surface

Nominal size	Valve model Ports Ø-inner x cord thickness		Ports Dimensions Quantity		Dimensions Ou		Seal	kits
Valve	valve illouei	Ports	Ø-inner x cord thickness	Quantity	NBR	FPM		
NG06	GFG2	A and B	9.25 x 1.78	3	SK-GFG2	SK-GFG2 FPM		

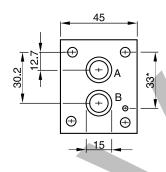
GFG UK.indd 28.07.22

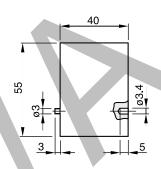


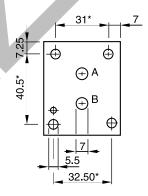

Sandwich rectifier plate

If a 2-way flow control valve is used in combination with a rectifier plate the valve can be used for meter-in and meter-out flow control of an actuator.

Design


The intermediate rectifier plate is designed with 4 identical, symmetrically arranged check valves. Thus the differential pressure is the same in both flow directions.





Measured with HLP46 at 50 °C.

Dimensions

Dimension tolerances

: ± 0.1mm : ± 0.2 mm

holes and silhouette of valve body: untoleranced dimension

Ordering code: HR OA 06 C

O-ring for sealing the connecting surface

Connections	Dimensions	required units
A, B	12 x 1.5	2

1) Details see chapter 12, series SPD.

Ordering code	
SPD 22 B 910	P, A, B and T = G1/4
SPD 23 B 910	P, A, B and T = G1/8

Subplates 1)

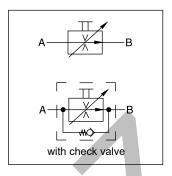
2-way flow control valves series 2F1C provide pressure and viscosity compensated flow from port A to port B. The counter direction is blocked (standard) or can be open via an integral reverse flow check valve (optional).

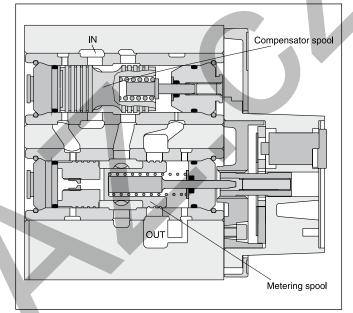
Function

The compensator spool is located in front of the metering spool. The metering spool is closed in the neutral position to avoid undesired initial actuator motion. The oil flow to open the metering spool has to pass a needle valve (not shown in the sectional drawing). The needle valve can be adjusted from the front panel to set the response time of the 2F1C.

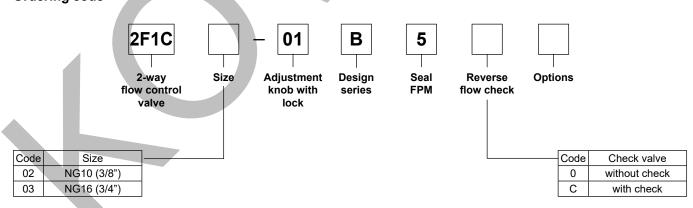
The metering spool is adjusted by the main control knob. The key lock has three positions:

Lock: Adjustment is locked.


Adjust: Full adjustment is permitted.

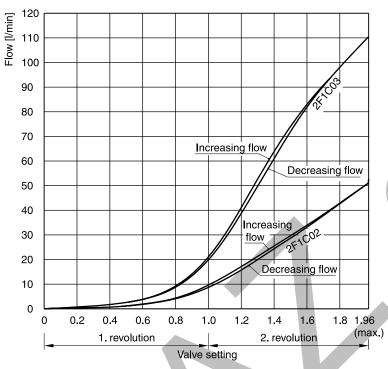

Trim: Fine adjustment of ±5 % is possible.

Features


- · 2-way flow control valve
- Subplate mounting according to ISO 6263
- · Excellent fine adjustment
- · Adjustable response time
- · Closed in neutral position
- · Optional reverse flow check valve
- 2 sizes, NG10 (3/8"), NG16 (3/4")

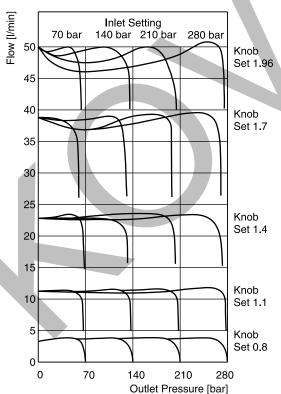
Technical Data

General								
Design			Orifice, infinitely variable, pressure-compensated					
Actuator			Manual flow rate adjustment					
Mounting typ	ре		ISO 6263					
Mounting po	sition		unrestricted					
MTTF _D value	e	[years]	150					
Weight		[kg]	6.0 (2F1C02), 9.0 (2F1C03)					
Ambient ten	nperature	[°C]	-20+60					
Fluid			Hydraulic oil according to DIN 51524					
Fluid temper	ature	[°C]	-20+70					
Viscosity,	permitted recommended	[cSt] / [mm²/s] [cSt] / [mm²/s]						
Filtering			ISO 4406 (1999); 18/16/13					
Min. pressure	e difference	[bar]	see diagram					
Max. operati	ng pressure		2F1C02	2F1C03				
	Port A Port B	[bar] [bar]	14280 0270	14350 0340				
Flow directio	on $ A \rightarrow B $ $ B \rightarrow A $		Flow control function blocked or free flow through check va	alve				

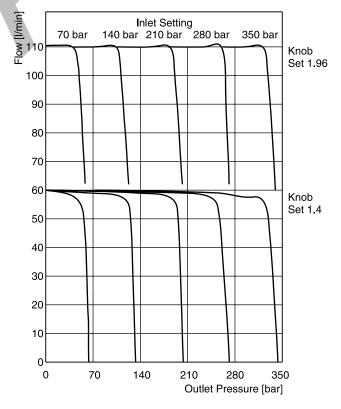


Characteristic Curves

Performance curves


Flow / knob adjustment characteristics at 210 bar

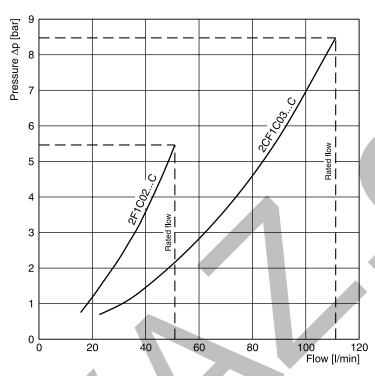
Flow / pressure drop curves

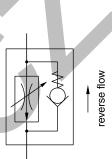

Constant inlet pressure - variable outlet pressure

2F1C02

All characteristic curves measured with HLP46 at 50 °C.

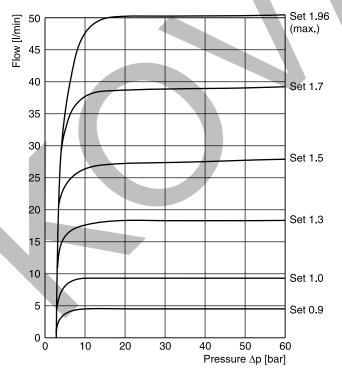
2F1C03

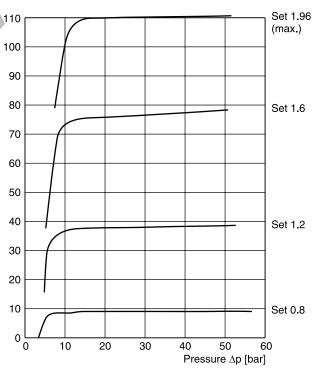



2F1C UK.indd 28.07.22

Characteristic Curves

∆p/Q performance curves

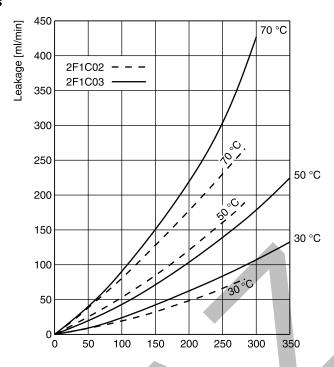

for reverse flow direction 2F1C02 at 280 bar 2F1C03 at 350 bar



Minimum pressure difference curves

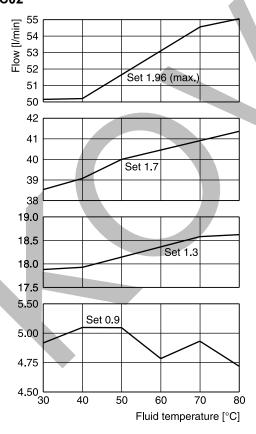
2F1C02

2F1C03



All characteristic curves measured with HLP46 at 50 °C.

2F1C UK.indd 28.07.22

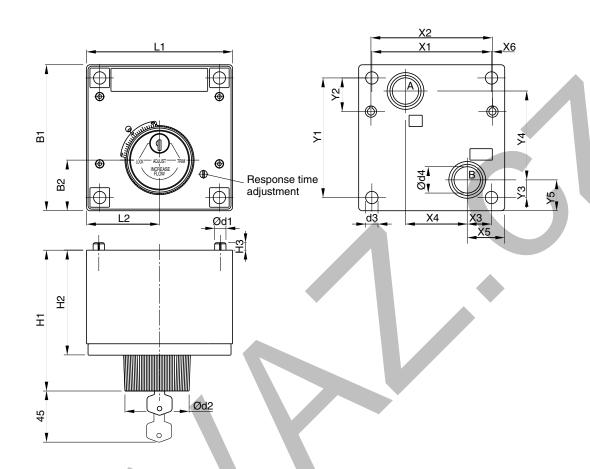


Leakage / pressure curves

2F1C03

Flow / temperature curves at 210 bar 2F1C02

All characteristic curves measured with HLP46 at 50 °C.


[uim/] 112 MOH 110 Set 1.96 (max.) 108 106 81 79 Set 1.6 77 75 38 37 Set 1.2 36 35 6.0 Set 0.8 5.5 5.0 4.5 L 30 40 50 60

2F1C UK.indd 28.07.22

Fluid temperature [°C]

Dimensions

Size	ISO-code	x1	x2	х3	х4	х5	x6	y1	y2	у3	y4	у5
02	6263-AM-07-2-A	76.2	79.4	9.5	44.5	19	-	82.5	23.8	30.2	41.3	39.7
03	6263-AK-06-2-A	101.6	103.2	20.6	52.4	31.8	0.8	101.6	28.6	15.1	75.4	26.2

Size	ISO-code	B1	B2	H1	H2	Н3	L1	L2	d1	d2	d3	d4
02	6263-AM-07-2-A	101.6	38.1	119.6	87.4	6.4	95.2	47.6	6.4	57.2	8.7	14.2
03	6263-AK-06-2-A	124	42.9	121.4	89.2	6.4	124	62	9.5	57.2	10.5	22.4

NG	ISO-code	Bolt kit - 町	5	◯ Kit	Surface finish
02	6263-AM-07-2-A	BK538 4x M8x95	31.8 Nm ±15 %		√R _{max} 6.3 √□0.01/100
03	6263-AK-06-2-A	BK539 4x M10x95	63 Nm ±15 %	on request	//////////////////////////////////////

2F1C UK.indd 28.07.22

